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SUMMARY 
A detailed case study is made of one particular solution of the 2D incompressible Navier-Stokes equations. 
Careful mesh refinement studies were made using four different methods (and computer codes): (1 )  
a high-order finite-element method solving the unsteady equations by time-marching; (2) a high-order 
finite-element method solving both the steady equations and the associated linear-stability problem; (3) 
a second-order finite difference method solving the unsteady equations in streamfunction form by 
time-marching; and (4) a spectral-element method solving the unsteady equations by time-marching. The 
unanimous conclusion is that the correct solution for flow over the backward-facing step at Re=800 is 
steady-and it is stable, to both small and large perturbations. 
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1. INTRODUCTION 

The Second Minisymposium on Outflow Boundary Conditions was held at Stanford University 
in July 1991, at which four previously published benchmark (OBC's) solutions for the incom- 
pressible, Navier-Stokes equations were presented and discussed. A summary of this meeting is 
described in Gresho' and a more detailed description is in Sani and Gresho.2 One of the 
benchmark problems was the two-dimensional flow over a backward-facing step (BFS) at 
a Reynolds number Re = 800. The benchmark solution for this case was published by Gartling3 
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and reported at the meeting. Eight other symposium participants, plus numerous previously 
published articles, obtained steady flow results that agreed-at least qualitatively-with this 
benchmark. 

However, one notable presentation at the Stanford meeting disagreed markedly with the 
consensus result and stated emphatically that the flow at Re=800 was, in fact, not steady but 
rather time-dependent, with both eddies (top and bottom) oscillating about their alleged steady 
solution. The presenter of this opinion was A. Tomboulides with M. Israeli and G. Karniadakis as 
co-authors of the work. This new solution was produced using the ‘exponentially-accurate- 
for-smooth-solutions’ spectral element method. 

Needless to say, the presentation did more than raise the eyebrows of the audience; the 
unqualified, matter-of-fact statements that all previous solutions were wrong also raised some ire 
and, of course, some serious concern. Could it be true that all others were wrong? The ‘local’ 
opinion at the meeting was ‘perhaps, but not likely’ since many previous studies (including six at 
the symposium) had, like Tomboulides et al., used a time-marching approach to obtain, finally, 
a steady solution. 

A primary concern, however, was that the benchmark problem statement and benchmark 
solution provided by Gartlingj had a priori assumed the existence of a stable steady solution. This 
assumption was predicated on most previous results in the literature plus some pre-symposium 
(time-dependent) test calculations run at LLNL. The assumed steadiness of the flow allowed 
considerable computational economy as the stationary Navier-Stokes equations could be 
attacked directly on a series of increasingly refined meshes to demonstrate mesh convergence. No 
testing was done on solution stability for the benchmark report. 

At the conclusion of the OBC minisymposium, Gartling was charged with the task of testing 
the steady flow result via the time-dependent equations. Additional simulations were to be run 
with some starting from ‘rest’ (actually potential flow, see Reference 4 for comments on impulsive 
starts), and others using various perturbations on the steady flow that were then followed in time. 
The results of these tests, which again indicated the correctness of the steady flow solution, were 
originally intended to be a small addition to the OBC minisymposium report by Sani and 
Gresho. The plan changed, however, with the subsequent appearance of an extensive article in 
Journal of Fluid Mechanics (JFM) by (basically) the same group from Princeton which focused on 
the backstep flow. The work of Kaiktsis et al.’ (hereafter referred to as KKO) pronounced again 
that the flow does not possess a (stable) steady solution above R e g  700 and ‘that the flow has 
undergone a second bifurcation at Re = 800. The coexistence of two incommensurate frequencies 
at the relatively low Reynolds number Re = 800 is, of course, consistent with the fact that this is 
a spatially developing flow exhibiting a very different spatial structure downstream.’ 

With the publication of the KKO result (and all the theory that was based on the result), we 
(Gartling, Gresho, and Sani) realized that a stronger, more focused response was required-and 
conceived the plan that finally resulted in this paper. It was our intention to determine the 
existence (or not) of a stable steady-state solution using four independent methods and four 
independent codes, all with sufficient refinement to preclude further debate. The computations 
were also performed independently; i.e. each code ‘user’ performed his portion before seeing what 
the others had done. The methods selected were: 

(1) a time-marching finite element method, 
(2) a steady (finite element) method that also simultaneously determines the stability (or not) of 

(3) a time-marching finite difference method, and 
(4) a time-marching spectral element method (almost identical to the method used by the 

the solution, 

Princeton group). 
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Because of the planned paper by Sani and Gresho for this journal, we selected this forum rather 
than JFM. We did announce to JFM readers (via a Letter to the Editor) that the paper in 
question contained some errors and referred them to this paper for details. Also, during the final 
stages of the preparation of this paper it became known by one of the authors (GK) that they had 
erred; we thus expect (and surely hope) that they will be sending their own ‘errata’ paper to JFM. 

The remainder of this paper is as follows: after a few more remarks regarding the KKO paper, 
the new results-one set from each of the four codes mentioned above-will be presented. Finally, 
after some brief discussion of other supporting evidence, some appropriate conclusions and 
comments will be offered. We urge the reader to peruse the benchmark solution’ for details 
regarding the steady solution; herein we merely summarize new results and how they were 
obtained. 

Returning briefly to KKO, we wish to point out several items, with a partial view toward 
emphasizing how seemingly careful and well-done simulations can still give bad answers. All of 
our discussion is related to the 2D portion of their paper. (They also did many 3D simulations.) 

It should be reported that the JFM simulations differed from those for the OBC test problem in 
two ways: 

(1) Their step filled only 47% of the channel vis-a-vis 50% for the test problem. 
(2) Their inflow boundary was located about one step height upstream of the expansion, 

whereas the test problem placed the inflow boundary at the same location as the expansion. 

That these are unimportant differences derives from the following two facts: 

(1) They obtained the same type of result for the actual OBC test problem. 
(2) They stated in KKO that ‘. . . different upstream locations results in negligible differences in 

In the Introduction, KKO refer to several recent numerical s t u d i e P  but do not relate the fact 
that all except Sethian and Ghoniem’ used conventional time-marching techniques and obtained 
steady solutions in the range of interest. Specifically, Osswald et d6 found steady solutions up to 
Re of at least 1474 (they found unsteady flow at Re = 4000), and Kim and Moin’ found steady 
flow at Re = 800 (they went no higher). The vortex method of Sethian and Ghoniem, on the other 
hand, yielded unsteady results for Re as low as 250; however, they used a uniform velocity profile 
at the inlet, rather than a parabolic one, which significantly alters the ~o lu t ion .~  

Regarding what appeared to be a serious attempt at grid refinement by KKO-a necessary 
condition for virtually all CFD simulations-we quote: ‘Finally, experimentation with higher 
resolution per spectral element (using eleventh-order polynomial expansions instead of eighth) 
produced identical results for all simulations, indicating that the spatial resolution employed is 
sufficient for the range of Reynolds number considered here (Re < 1300). Regarding time accu- 
racy, tests with schemes of order 5=2 and J =  3 (see Appendix) as well as time step At = lo-’ and 

resulted in differences of approximately 1 %.’ Thus, they did try, and this is certainly to their 
credit. But in the last of the four ‘numerical’ sections of this paper, we shall show that a harder try 
is necessary, at least using the spectral element method-and show how to do so. 

For the record, we state below the problem whose (approximate) solution at Re = 800 is desired 
and, if the solution is steady, whose stability is to be investigated: 

the flow field ...’ 

au  
at 
- + u u V u = - V P + R e - ’ V Z u  and V*u=O, 

where Re=UH/v with U being the average inlet velocity and H the full channel height. The 
geometry for the computations is shown in Figure 1. The domain extends from the step face and 
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Figure 1. Backward-facing step geometry 

inlet at x = O  to the outflow boundary, nominally at x = 15 (30 step heights) although some 
simulations were performed with the outflow boundary at x = 17 and x = 30. The step and inlet 
are taken to have heights of s = h = + ,  and the channel walls are located at y =  +4, providing 
a channel height of N =  1. No-slip boundary conditions are applied on the channel walls and step 
face, and a parabolic velocity profile is applied at the inlet: u; = 24 y(4- y) and u,, = 0. The OBC's 
were left to each analyst to choose since we are reasonably sure that they cannot be 'legislated' 
and very sure that the 'best' are not yet known-cf. the purpose of the OBC minisymposium. 

2. NUMERICAL SIMULATIONS 

This section contains summaries of the four independent studies conducted to answer the 
question posed in the title of this paper. 

2.1. A time-dependent finite element method 

As a first step in the investigation of time dependence in the BFS flow, a time-dependent finite 
element method was used to study the stability of the steady flow solution produced in Refer- 
ence 3. For the results presented there, steady flows were obtained at Re = 800 by use of a Newton 
iteration method coupled with zeroth-order continuation where solutions at Re = 200,400 and 
600 were used as intermediate steps. In the present work three types of time-dependent simula- 
tions were studied which used the same software as described in Reference 3 and employed the 
same problem set-up and some of the same computational grids. 

Run-up (time-marching) simulations. The most obvious approach for investigating the possib- 
ility of time-dependence in the backstep problem consists of simulating the Re=800 case as 
a time-accurate, transient problem starting from a quiescent initial condition. This approach 
mimics the general run-up technique employed by KKO, although the finite element method was 
used here in place of a spectral element method. The NACHOS I1 code (see Reference 10) was 
used to simulate this problem via an implicit, adaptive time step, predictor/corrector time- 
integration method. The predictor step employed an explicit, second-order Adams-Bashforth 
method; the implicit corrector utilized the second-order trapezoid rule. Since the pre- 
dictor/corrector algorithm is not self-starting, the first two time steps are computed using the 
first-order backward Euler method and a small, fixed time step. A one-step Newton iteration was 
used in conjunction with the corrector step and the accuracy of the method was maintained 
through an adaptive time step procedure and a user-specified integration tolerance. The overall 
algorithm follows closely the widely used method described by Gresho et al." 

At time zero, the fully developed (parabolic) inlet velocity was imposed on the computational 
domain and the simulation allowed to run to steady state. The computation was terminated 
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through a steady-state tolerance that required the L2 norm of changes in the total velocity field 
between time steps to be less than A nominal integration tolerance of 0.001 was used for 
most simulations with select cases also run with a tolerance of 04005 to verify the temporal 
accuracy of the computations. The initial (non-dimensional) time step was set at At = 0.01, 
although the adaptive procedure increased this value by over three orders of magnitude by the 
end of the simulation. The computational mesh for the problem corresponded to mesh 
B (10 x 200 elements) in Reference 3 and extended to 60 step heights in the downstream direction. 
The mesh employed a 9-node, Lagrangian finite element approximation for the velocity compon- 
ents and a discontinuous linear pressure approximation. Grid convergence was again verified by 
rerunning the problem on mesh C (20 x 400 elements) as defined in Reference 3. 

The transient response of the BFS run-up problem is composed of several stages. The initial 
velocity field is not divergence-free. However, the ill-posed, ‘impulsive start’ of this run-up 
simulation is converted to a well-posed initial value problem through use of the backward Euler 
method in the first time step; see Reference 4 for further details. At the end of the first step, the flow 
should be virtually potential with vortex sheets on the channel boundaries. Figure 2 shows 
contour plots of the stream function and vorticity for the first time step and the result is clearly as 
predicted-except for the vorticity at the inlet region which is generated by the specified (and 
non-‘potential’) boundary conditions. Velocity profiles taken across the channel at several 
streamwise stations show that the core flow is moving uniformly at the average velocity 
(Uavg =0.5); the no-slip condition on the wall produces a thin region of high vorticity. 

From the initial time step, the flow field evolves with a series of eddies (separation bubbles) 
being formed sequentially along the lower and upper walls. The development of the flow field is 
illustrated in a series of streamline plots in Figure 3. The first eddy forms at the step corner and 
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Figure 2. Streamines and vorticity contours for initial time step in run-up simulation 
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Figure 3. Streamlines during evolution of time-dependent simulation started from rest. Non-dimensional times t = 2.5, 
50, 10.0, 15.0, 20.0 and 30.0 
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expands to form a separation region that is attached to the lower wall. As this primary eddy 
grows in the downstream direction, a second eddy forms and grows on the upper wall. Additional 
eddies of progressively smaller size are generated along the boundaries as the simulation 
proceeds. In concert with the staggered location and size of the wall separation zones, the main 
flow coming from the inlet is forced to follow a sinuous path along the channel. In the later stages 
of the flow development, the smaller (downstream) wall eddies are damped and disappear; the 
sinuous behaviour of the main channel flow decays and returns to a unidirectional flow that fills 
the channel cross-section. With the progressive elimination of each of the smaller eddies, the two 
major separation zones near the step undergo an adjustment in size and strength and slowly 
approach their steady-state configuration. No attempt is made here to explain the details and 
mechanisms involved in the temporal development of this flow as this would require significant 
further analysis. However, it should be noted that the transient eddy structures in this flow are 
relatively stationary in their spatial locations with their appearance/disappearance tied to the 
time-dependent meandering of the core flow. This is a marked distinction from the flow 
description in KKO, where eddies were described as being shed from the walls and convected out 
of the channel. 

Despite the interesting features of this transient simulation, the essential question for this study 
is the long-term behaviour of the solution field. Figures 4 and 5 show the time history plots of the 

1.25 

1.00 

0.75 

0.50 

-I 
W > 
3 

0.25 

0 . 0 0  

-0.25 

-0.50 
50 100 150 200 250 300 350 400 450 

TIME 

Figure 4. Time instories for the u velocity component at the x / H  =6 station; time-dependent simulation started from rest 
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Figure 5. Time histories for the u velocity Component at the x/H = 12 station; time-dependent simulation started from 
rest 

streamwise velocity component at several points across the channel for two stations located 12 
( x / H  = 6) and 24 ( x / H  = 12) step heights downstream of the corner. It is apparent from these 
figures and the previous description that the first 50-60 non-dimensional time units (approx- 
imately one transit period for the channel) are dominated by the formation and collapse of the 
distributed wall eddies. Figures 4 and 5 show a slow, monotonic decay to a time-invarant state 
with no evidence of the periodicity described in KKO. A comparison of the solution obtained at 
the end of the transient analysis with the steady results in Reference 3 showed virtually no 
difference in the solution fields. 

Random perturbation simulations. A standard method of testing the local stability of a solution 
is to perturb it and observe the time-dependent response. If the perturbed solution returns to its 
steady-state value, the solution is deemed stable, while any other type of behaviour indicates 
a loss of stability. The steady backstep solution was tested using this technique. A random 
(positive or negative) perturbation to each component of the velocity field was generated for every 
nodal point in the grid. Four specific cases were tested in which the magnitude of the perturbation 
at each node was set at 1 , 3 , 1 0  or 20% of U,,,,,. The perturbation field was added to the steady 
flow solution on mesh B and a time-dependent simulation was performed using the same 
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integration algorithm as described previously. As before, the first backward Euler step projects 
the perturbations to the appropriate divergence-free subspace. 

For each of the perturbation cases studied, the overall qualitative behaviour of the solution was 
the same, although the time required to return to a steady flow was slightly longer for the larger 
perturbations. Figures 6 and 7 show the time histories for velocity components at various points 
in the channel for the 10% perturbation case. The time-dependent response of this flow is very 
similar to the run-up case. The imposed perturbation field is sufficient to disturb the size and 
strength of the two major separation regions. This results in the development of a sinuous core 
flow with small wall eddies emerging on both walls. Eventually, the spatial oscillations in the core 
flow begin to diminish and the smaller eddies disappear; the perturbation field is damped in 
approximately one-half of the channel transit period (30 non-dimensional time units). Again, the 
asymptotic steady state produced by the time-integration process agreed with the original, 
unperturbed steady-state solution. 

Periodic perturbation simulations. The final test of the stability of the steady flow solution was 
designed to perturb the flow at the frequency reported by Kaiktsis et al. From KKO, the 
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Figure 6. Time histories for the u velocity component at the x / H = 6  station; time-dependent simulation started from 
a 10% random perturbation of the steady solution. 
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Figure 7. Time histories for the u velocity component at the x / H  = 12 station; time-dependent simulation started from 
a 10% random perturbation of the steady solution 

time-dependent flow at Re = 800 was reported to have a predominant frequency of 0.054. In an 
attempt to drive the steady flow unstable, the inlet velocity profile was modified to have a time 
periodic behaviour for three cycles, after which it was held at its original value. Two cases were 
studied, with the maximum amplitude of the oscillatory profile being 10 and 20% higher than the 
steady value at a frequency of 0.054. Solutions for this problem were generated on both meshes 
B and C.  

During the time period that the inlet profile was varying sinusoidally, the channel flow 
responded with a series of time-dependent eddies along the upper and lower wall with a wavy 
streamline pattern in the core flow. Due to the pulsatile variation in the core flow, the two large 
separation zones close to the step were periodically subdivided into several smaller eddies and 
then recombined. When the inlet profile reverted to its steady value, the eddy structures began to 
decay and the flow slowly damped to its original steady state. Figures 8 and 9 provide time 
histories for the 10% perturbation case and Figure 10 shows the corresponding streamlines. 
Results for the 20% case were qualitatively similar. As in the previous two simulations, there was 
no evidence of a persistent time-dependent flow. 
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Figure 8. Time histories for the u velocity component at the x / H = 6  station; time-dependent simulation started with 
a time-periodic inlet velocity 

Conclusions. The simulations described here provide strong evidence that the claims made by 
KKO with regard to time dependence in the backstep problem are not correct. This conclusion 
will be corroborated by some of the results in subsequent sections. Of course, a proof that this 
flow is indeed time-independent can only be accomplished through a careful study of the 
bifurcation and stability problem. This topic is considered in the next section. 

2.2. A steady-state Jinite element stability analysis 

Using the finite element package ENTWIFE," a mixed finite element approximation of (1) was 
obtained using nine-node quadrilateral elements with biquadratic interpolation for velocities and 
discontinuous piecewise-linear interpolation for pressures. (This is the same element pair used by 
Gartling, and is known to be one of the best 2D  element^.'^) This produces a finite-dimensional 
system of differential algebraic equations (DAE's) of the form 

(2) 
wheref; u E R", and g, p E R". Here n =- rn, M (mass matrix) and K (viscous matrix) are symmetric 

Mti + N(u,  Re)u + Ku + CP =f, CTu=g, 
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Figure 9. Time histories for the u velocity component at the x / H =  12 station; time-dependent simulation started with 
a time-periodic inlet velocity 

positive definite n x n matrices, N(u ,  Re) is an n x n (advection) matrix and C is an n x m matrix of 
rank m. Also, u and P represent the components of the discretization of the velocity field and 
pressure, respectively. In biock matrix form, (2) can be written as the time-singular ODE 
system-an index 2 DAE system (see Reference 13): 

Bd + D(v, Re) v = h, v, h E RN, (3) 
where 

D(v,  Re)= v =  

and N = n + m .  
The simplest solutions of this system are the steady-state solutions (v ,  Re) which satisfy 

D(G, Re)v=h; (5 )  
and these may be computed for various Re values, for example, by numerical continuation 
techniques (e.g. Reference 14)-which we did. But we wish to determine in addition whether or not 
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any steady-state solution attained is stable with respect to small disturbances, and this is 
discussed in the next subsection. 

Eigenvalue calculations. To determine the stability of a steady-state solution (u, Re), the 
principle of linearized ~ tab i l i ty '~  requires that we linearize ( 3 )  about (u, Re) and analyse solutions 
of the perturbed homogeneous system 

BW + AW = 0, w E RN, (6) 
where A = D (v ,  Re) + D, (v, Re) v,  D ,  = dD/dv and A is called the Jacobian matrix. In fact, a steady- 
state solution of (2)  is stable if and only if Re (p) > 0 for all eigenvalues p of A$ = pB$, where 
w = Ge-pr. Hence, to determine stability we need to compute the eigenvalues of the generalized 
eigenvalue problem16 

A $ = p B G ,  (7) 
where A is an N x N matrix with the following block structure: 

and H = N (u, Re) + N u  (u, Re) u + K which is an n x n sparse non-symmetric matrix. If the eigen- 
values {pi} of (7) are ordered by increasing real part (i.e. i<j=>Re(pi)<Re(pj)), then to determine 
stability it is sufficient to compute pl and declare a steady-state solution of (2)  (and thus, 
hopefully, of (1)) stable (unstable) if Re(pl)>O (Re(p,)<O). 

The basic idea behind finding the most dangerous eigenvalue of (7) is to transform the problem 
into one in which the most dangerous eigenvalue corresponds to an extremal eigenvalue which 
can be found by a standard iterative scheme. We have used a modified Cayley transform to 
achieve this. The transformed eigenvalue problem was solved using the subspace iteration 
method which is guaranteed to find the extremal eigenvalue if the starting subspace is not 
defective in the corresponding eigenvector. There are a number of technical difficulties associated 
with the fact that (7) is a generalized eigenvalue problem with B being structurally singular. 
A complete discussion of the implementation of the algorithm and the resolution of the technical 
difficulties can be found in Reference 17. Further details regarding the eigenstructure of (7) for 
Re=O (Stokes equations) can be found in Reference 18, wherein it is shown that this eigen- 
problem is defective: there are only n - rn finite and positive eigenvalues with corresponding 
(discretely) divergence-free eigenvectors; the remaining 2m modes have infinite eigenvalues which 
are equally split between rn eigenvectors (in the pressure only) and m generalized (and not 
discretely divergence-free) eigenvectors (in the velocity only), each of the former serving to 
generate one of the latter. For Re > 0, the basic structure remains the same with the exception 
that, because of the unsymmetric matrix, the eigenvalues can be complex and it is no longer 
certain that the n - m  divergence-free modes have Re(pi)>O. 

Results. In our finite element discretization we used a mesh (which gave results) virtually 
identical to that (those) of G a r t l i ~ ~ g , ~  i.e. a uniform distribution of elements across the channel, 
a uniform distribution in the upstream region of O<x < 15 and a smoothly graded distribution in 
the flow direction for the region 15 < x < 30, so that elements near x = 30 were approximately 
twice the length of the elements near x= 15. 

All computations were performed using a Cray 2 supercomputer in single (64 bit) precision on 
the same meshes (A-D) as used by G a r t l i ~ ~ g . ~  

We now turn our attention to the question of the stability of the computed steady-state 
solutions. A tolerance of E =  lo-' (Reference 17) was set for computation of an approximation fil, 
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Table I. Computed most dangerous eigenvalue for meshes A and B for various Re 

Re Mesh A Mesh B 

MV P I  MV bl 

200 171 38.39741 24 1 38.89636 
400 24 1 20.09698 24 1 21,24205 
600 24 1 15.39 194 241 15.05634 
800 24 1 16958417 24 1 14.94673 

Table 11. Computed most dangerous eigen- 
value for meshes A-D for Re = 800 

A 24 1 16.58417 
B 24 1 14.94673 
C 24 1 15-06843 
D 24 1 15.06489 

say, to the most dangerous eigenvalue p1. We computed jil for mesh A for Re = 200,400,600,800 
with a subspace of size k =  10 in the subspace iteration method.lg We also computed ,G1 for mesh 
B for the same values of Re. The results are given in Table I, where the number of matrix-vector 
multiplies (MV) for each problem is also shown. (The computation is dominated by the 
matrix-vector multiplications so that MV is a measure of the computational performance of the 
met hod.) 

Following the advice given in Reference 17, various values of k-the size of the subspace in the 
subspace iteration method-were used to ensure that convergence is consistent and we thus also 
computed fil  at Re=800 for (mesh A)  for k=20, 30 and 40. Convergence to 1658417 was 
observed for all the values. As a final check, we computed for mesh A for Re = 800 but using 
100 orthogonal iterations in the verification step to increase the possibility of an approximation 
to an eigenvalue to the left of 1658417 appearing. It turned out that one did not and we thus 
conclude that the steady-state solution for Re = 800 on mesh A is stable. 

Finally, we computed fil at Re=800 for meshes A-D for k = l O  with the results given in 
Table 11. The computations at these finer meshes indicate that the most dangerous eigenvalue is 
near to 15. 

Conclusions. We have applied new iterative techniques for computing the most dangerous 
eigenvalue of the linearized Navier-Stokes equations to the problem of flow over a backward- 
facing step at a Reynolds number of 800 and an expansion ratio of 2-0. The results indicate that 
this flow is stable. 

Careful checks have been carried out to ensure that the most dangerous eigenvalue has indeed 
been found. The only way to be absolutely sure is, of course, to compute all the eigenvalues; 
however, this is not a practicable proposition for such large problems. The technique we have 
used, namely subspace iteration on an appropriately transformed problem, is almost certain to 
find the most dangerous eigenvalue. Being based on the power method, it can only fail if the initial 
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approximation to the subspace has virtually no component of the most dangerous eigen- 
value-which is not very probable. As an additional check, a verification step was carried out in 
which 100 additional iterations were performed for one particular case (mesh A, Re = 800). 

The calculations were also carried out on a range of grids and showed little sensitivity to grid 
refinement. Thus, we are reasonably confident that we have found the most dangerous eigenvalue 
for the flow over a backward-facing step at Re=800 and, since this eigenvalue is definitely 
positive, the flow is stable. 

2.3. A time-dependent finite diFerence method 

Summary description of the numerical method. The velocity field for two-dimensional incom- 
pressible flows can be written in terms of the stream function $ as u(x, t)=d@/ay and 
~ ( x ,  t) = - a@/ax. Equation (1) thus becomes 

a’$ a$ a# a+ a+ 1 
at  ay  ax ax ay  Re 

-+-V’- - -V’- - -V4~=0 for x in Q, and t>O. (9) 

The data for the problem in this formulation consists of the initial values for @ and boundary 
data, such as the standard set of boundary conditions $(x, t ) =  P(x, t )  and d\l/ /an(x, t)=y(x, t )  for 
x in d Q  and t > 0 where aQ is the boundary of Q, and d/an is differentiation in the exterior normal 
direction at the boundary. A steady-state form of (9) was previously used by Schreiber and 
Keller” with path continuation methods for calculating steady high Reynolds number cavity 
flows. 

We use a centred spatial differencing for (9), a Crank-Nicolson (trapezoid rule) time differ- 
encing for the diffusion terms, and a second-order Adams-Bashforth time differencing for the 
convection terms-and a fixed At. The velocity components are directly recovered from the 
discrete stream function by central differencing, with all three variables being defined at each grid 
point. The velocity solution is exactly (discretely) divergence-free with respect to a central 
difference formulation of the divergence operator. 

The artificial outflow boundary condition that we use is 

where w = V’ $, via second order backward-difference formulas for the derivatives. 
The Crank-Nicolson differencing scheme for the diffusion term in (9) does not impose 

a stability constraint on the time step size, while the Adams-Bashforth differencing scheme for the 
convection terms does impose a stability constraint. We have successfully used 
0.1 5 6 11 u 11 At/Ax 6 0.85, for Reynolds numbers in the range 100 <Re 6 25 000, with grid sizes in 
the range 1/384 6 Ax = Ay < 1/16. The truncation error for this method is 0 (At2)  + 0 (Ax’). 

The implicit operator in the discrete time-stepping equation combines the Laplace and 
biharmonic operators, and a multigrid method is used to solve this equation at each time step. 
The approach that we have used is an adaptation of a method for biharmonic problems that was 
developed by Linden.21 The essential detail is that the biharmonic operator is factored as two 
Laplacians. The multigrid solver for the resulting system of two second-order elliptic equations 
uses point Gauss-Seidel relaxation as the smoothing operator, with linear restriction and 
prolongation. A simple V-cycle iteration scheme is used, with 3 iterations at each grid level while 
coarsening, and with no iterations while refining. At each time step, 10 to 20 V-cycles are used to 
reduce the residuals to less than 5.0 x lo-” or 5 . 0 ~  depending upon the problem. The 



STABILITY OF STEADY VISCOUS INCOMPRESSIBLE 2D FLOW 519 

factoring of the biharmonic operator as two Laplacians introduces the vorticity o = V2 $ only for 
the purpose of having a convergent iteration scheme, but it incidentally produces both $ and o as 
the simultaneous solution of coupled Poisson and Laplace equations. Note that there are no 
boundary conditions (except at outflow) applied to the vorticity-in agreement with the con- 
clusions of Gresho.22 

The algorithm is extremely robust with respect to Reynolds number, and has been used to 
compute directly transient incompressible flows with smoothly resolved stream function, kinetic 
energy and vorticity contours for Reynolds numbers as high as Re = 25 000. The standard steady 
state for the lid-driven cavity is obtained at Re=7500 with Ax= 1/2-56, but the algorithm does 
produce unsteady time-asymptotic states in the lid-driven cavity for Re= 10000 with Ax = 1/128 
and A x =  1/192. These results suggest that Re= 800 is well within the range of Reynolds number 
where the algorithm will neither generate purely numerical instabilities, nor unduly dampen any 
instability that is inherent in the dynamics of the Navier-Stokes equations. Further details are 
given in References 23-27. 

Numerical results. The inlet boundary conditions are those of Gartlit~g;~ for initial conditions 
we simply continued the boundary data at x=O down the entire channel length. The resulting 
initial condition is an artificial state with a constant parabolic flow profile in the upper half of the 
channel for its entire length, with no flow in the lower half of the channel. This can perhaps be 
thought of as the initial data for a popped membrane problem with a horizontal membrane 
separating two different steady-flow states. Three different simulations have been conducted for 
this problem, with three different grids. A coarse grid simulation has been run with Ax = Ay = 1/32 
and At = 1/80, a medium resolution simulation with Ax = Ay = 1/64 and At = 11200 and a fine grid 
simulation with A x = A y =  1/128 and At = 1/800. All three simulations were run out to the 
non-dimensional time t=400  and in all cases the channel length is 15 (30 step heights). 

The initial transient evolution of the medium resolution simulation is presented in Figure 11 as 
a sequence of stream function contour plots for t = 5, 10, 15,20,25 and 30. In Figure 1 l(a) at t = 5, 
the lower and upper eddies are already present, although both eddies are very far upstream from 
their final positions. In Figure 1 l(b) at t = 10, a very significant wavy disturbance has developed in 
the flow field downstream from these eddies. In Figure 1 l(c) at t = 15, there is a small distinct third 
recirculation on the lower wall. In Figure 1 l(d) at t = 20, there are additional small distinct eddies 
on both the upper and lower walls. In Figure 1 l(e) at t = 25, the upper and lower eddies are both 
single large recirculations, and the small recirculations on the upper and lower walls have 
disappeared, leaving only slight waves in the flow field as the last indication of their presence. In 
Figure 1 l(f) at t = 30, the upper and lower eddies are both in the form that will persist, although 
they are both slowly creeping down the walls and stretching, and there is a slight waviness in the 
downstream flow field still visible from the effect of the initial transient. The flow at t =400 for the 
960 x 64 grid is displayed in Figure 12. Figure 12(a) gives the stream function contours, showing 
the two eddies stretched and shifted downstream from their locations at t = 30 in Figure 1 l(f). The 
vorticity and kinetic energy contours at t=400 are displayed in Figure 12(b) and 12(c). The 
transient dynamics displayed above show that the nearly ‘steady-state’ results that have been 
obtained at t = 400 with the time-dependent finite difference simulation do not depend upon 
initial data that are chosen either to be near the desired steady state, or to avoid vigorous 
dynamics that might initiate a flow instability that could lead to an unsteady state. 

The portrayal of the transient evolution given above is purely qualitative, and is entirely 
inadequate for making a compelling case that the time-asymptotic state is indeed a steady flow. 
Several variables have been recorded at each time step in order to monitor more carefully the time 
evoluton of these simulations. The change in the solution during a single time step is monitored 
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by the relative L1 norm of the stream function change per time step, defined as 

i. i 

i .  .i 

and the relative L,  norm of the vector field change per time step, defined as 

i, j 

The qualitative state of the flow is monitored by the global stream function maximum in the 
middle of the upper eddy, and the global stream function minimum in the middle of the lower 
eddy. Note that the centre of the upper and lower eddies is always taken to be on a grid point. 
The qualitative state of the flow is also monitored by the total kinetic energy of the entire flow, 
defined as 

1 
- AxAy C (u[:  I )*  +(I$; l)'. 
2 i, j 

Figure 13(a)-(e) presents the five variables monitoring the evolution of the flow simulation on 
the 960 x 64 grid for l O O d t  G400. The stream function change per time step in Figure 13(a), and 
the velocity field change per time step in Figure 13(b), are both 0(10-7) by tx200. These two 
indicators are similar to measures that are used to monitor convergence to a steady state, and 
0(10-7) is below the levels that are commonly used to stop a time evolution with a declaration 
that a steady state has been attained. Note in Figure 13(e) that the change in the total kinetic 
energy for 100GtG400 is occurring in the 5th and 6th significant digits. All of the data in 
Figure 13 show a gradually slowing monotonic approach to a time-asymptotic value, certainly 
for t>  - 130. There is a complete absence of any amplifying or oscillatory behaviour. 

Table 111 presents stream function values and grid point co-ordinates for the stream function 
extrema that occur at the centres of the upper and lower eddies of the 1920 x 128 fine grid 

Table 111. Stream function values at eddy centres 1920 x 128 grid 

t 
- 
100 
120 
140 
160 
180 
200 
220 

Stream function 

- 0.034196 
- 0034181 
- 0-034 1 74 
- 0.034 1 79 
-0'034184 
- 00341 87 
-0'034190 

X 

3.351 
3.390 
3.421 
3.343 
3.359 
3.359 
3.3671 

Y Stream function X 

0.2890 0,507791 71406 
0.2890 0.507464 7.2500 
0.2890 0.507213 7.2968 
0.2968 0,507029 7.3671 
0.2968 0.506904 7.3906 
0.2968 03068 14 7.3984 
0.2968 0,506750 7.4140 

Y 

0.7968 
0.8046 
0.8046 
0.8125 
0.8125 
08125 
0.8125 

250 -0.034192 3.375 0.2968 0.506688 7.4218 08125 
300 - 0.034194 3.375 0.2968 050663 7.4296 08125 
350 -0.034194 3.375 0.2968 0.506617 7-4296 0-8 1 25 
400 - 0.034 195 3.375 0.2968 0.506609 7.4375 0-8125 

Ga - 0.0342 3.350 0300 05064 7.400 0-800 

Note: The row labelled Ga is the steady reference solution (see Reference 3) 
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simulation. Note that the time intervals between successive rows of data are 20 non-dimensional 
time units for the first seven rows, and either 30 or 50 non-dimensional time units for the last four 
rows. The global stream function minimum data are presented in the left half of Table 111. Note 
that the stream function minimum in the lower eddy gets larger (closer to 0) until t z 140, and then 
the stream function minimum becomes monotonically smaller (further from 0) up to t = 400. Note 
also that the x co-ordinate for the centre of the lower stream function eddy has a local in time 
maximum at t z l 4 0 ,  then a local in time minimum at t z l 6 0 ,  with a progressively slower 
monotonic increase toward a time asymptotic value as t+400. Note in particular that for 250d t, 
the co-ordinates for the centre of the lower eddy do not change, and the minimum stream function 
value at the eddy centre changes monotonically in the 5th significant digit. The global stream 
function maximum data are presented in the right half of Table 111. The stream function 
maximum in the upper eddy decays monotonically from a maximum attained before t =  100, with 
change in the 5th significant digit for 250Gt. Note that the x co-ordinate change from t=200 to 
t = 220 is 2,/128, or two grid points, while the change from t=220 to t=250 is one grid point, the 
change from t = 250 to t = 300 is one grid point, and the change from t = 300 to r = 400 is one grid 
point. This clearly shows a gradual but slowing monotonic change toward a time-independent 
value. 

The evolutions of the stream function maximum and minimum from the fine grid simulation 
are plotted in Figure 14 for 380GtG400. These plots clearly show in detail the non-oscillatory 
gradually slowing monotonic change in the final stages of the fine grid evolution for the stream 
function extrema. Over this time interval the stream function maximum changes from 
050661 1635 at t = 380 to 0506609304 at t =400, and the stream function minimum changes from 
-0.0341949929 at t=380 to -0-0341950703 at t=400. The cumulative changes over these 20 
non-dimensional time units for the stream function maximum and minimum are -2.33 x 
and - 7.74 x lo-*, respectively. This change is over 16000 time steps, and by any reasonable 
measure can be considered to be gradual. Note that both plots are showing a decrease in the 
stream function extrema, but that the stream function maximum is coming closer to 0, while the 
stream function minimum is going further from 0. This behaviour is consistent with the medium 
resolution simulation, and indicates a weakening of the upper eddy and a strengthening of the 
lower eddy. 

Table IV presents separation and reattachment points, and eddy lengths, for the upper and 
lower eddies from the 1920 x 128 fine grid simulation. The data in Table IV are presented for the 
same time values as the data in Table 111. The separation and reattachment points are defined as 
points on the boundary where the vorticity o = O .  These x values are obtained by linear 
interpolation between two grid points where the vorticity changes sign. The eddy length for the 
upper eddy is defined as the difference between the x co-ordinates of its separation and 
reattachment points. The lower eddy length is defined as the x co-ordinate of its reattachment 
point. The lower eddy shows a monotonic lengthening that is consistent with the medium 
resolution simulation and indicates a strengthening of the lower eddy. For h = Ax = Ay = 1/128, 
the approximate change in lower eddy length from t = 200 to t = 220 is 3.07 h, from t = 220 to 
t = 250 is 2.90 h, from t = 250 to t = 300 is 2.34 h, from t = 300 to t = 350 is 0.91 h and from t = 350 to 
t=400 is 0.36h. The upper eddy shows a monotonic shortening, which is consistent with the 
monotonic decay of the stream function maximum at the centre of the upper eddy, and is another 
indication of the gradual weakening of the upper eddy. The upper eddy separation point is 
monotonically increasing, but its reattachment point shows a local in time maximum at t z 120, 
with monotonic decrease for 120 < t. The approximate change in upper eddy length from t = 200 
to t = 220 is - 3.50 h, from t = 220 to t = 250 is - 3.32 h, from t = 250 to t = 300 is - 2-68 h, from 
t = 300 to t = 350 is - 1-04 h and from t = 350 to t =400 is -0-41 h. Both the lower and upper eddy 
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Table IV. Eddy lengths, 1920 x 128 grid 

Lower eddy Upper eddy Upper eddy Upper eddy 
t length start stop length 

100 
120 
140 
160 
180 
200 
220 

250 
300 
350 
400 

5.5761 
5.7369 
5.8462 
5.9208 
5.971 8 
6.0068 
6.0309 

60535 
6.07 1 8 
6.0789 
6.08 17 

4.3710 
4.5193 
4.6204 
4.6895 
4.7368 
4.7693 
4,7916 

4.8126 
4.8296 
4.8362 
4.8388 

10.5059 
10.5215 
10-5105 
10.4979 
10.4880 
104809 
10.4758 

10.4709 
10.4669 
10-4654 
10.4648 

6.13483 
6.0021 6 
5.89009 
5.80838 
5.75114 
5,71157 
5.68419 

5.65825 
5.63730 
5.6291 7 
5.62597 

Cia 6.10 4.85 10.48 5.63 

Note: The row labelled Ga is the steady reference solution (see Reference 3) 

length data clearly show the gradually slowing monotonic change that is typical of convergence 
to a steady state. 

Figure 15 presents the relative L1 norm of the stream function and velocity field changes per 
time step from the 1920 x 128 fine grid simulation for 380G t G400. Note that the scale of change 
for both indicators is 0(10-9) for the entire interval 380 dt G400. The total kinetic energy for this 
simulation shows the same behaviour, monotonically changing from 3-32051 176 at t = 380 to 
3.32050964 at t=400, to the precision that these data are stored. The time evolution of this 
recorded data is represented as 212 discrete single digit step decreases of - 1.0 x lo-’ in the total 
kinetic energy over 16 OOO time steps, and cannot be plotted by the graphics package that is being 
used. Since the changes in the flow eddies are all monotonic, even the very gradual evolution that 
this simulation shows for r x400 can still accumulate to a noticeable change when integrated over 
a long time interval, so the eddy characteristics estimated by this flow at t =400 must be accepted 
with appropriate caution. 

Conclusions. The problem of always approaching but never reaching the steady time asymp- 
totic state is generic to the use of time-dependent codes for calculating ‘steady-state’ results. It can 
even occasionally happen that a very weak instability gradually becomes amplified over a very 
long time period until a noticeable unsteady time-asymptotic state is clearly manifested. This type 
of behaviour in the square-driven cavity occurs near the critical Reynolds number for a Hopf 
bifurcation to a periodic unsteady time-asymptotic state, and is associated with small secondary 
and tertiary recirculations in the cavity corners. The instabilities are actually present for 
Re % 5000, but they are damped out in the time evolution until Re FZ 8900.24, 26 The crucial point 
is that oscillatory behaviour is observed at Reynolds numbers below the critical Reynolds 
number for a Hopf bifurcation, but the oscillations are damped (by definition) for subcritical 
Reynolds numbers. This type of damped oscillation is entirely missing from the simulation data 
for the BFS which suggests that Re= 800 is clearly below the critical Reynolds number for a Hopf 
bifurcation to a periodic time-asymptotic flow. The gradually slowing non-oscillatory monotonic 
change displayed by all of the data for this simulation is completely consistent with and strongly 
supportive of the conclusion that the flow over the backward-facing step is steady at Re = 800. 
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2.4. A time-dependent spectral element method 

In this section, a time-dependent spectral element method is applied to simulate the two- 
dimensional transient flow of an incompressible fluid over a backward-facing step at a Reynolds 
number of Re = 800. The geometry employed in these simulations is as discussed in the previous 
sections. The corner of the step is taken to be the origin of the co-ordinate system, and the 
downstream channel extends a distance L / H  = 17 downstream from the step. This channel length 
is chosen to be equivalent to that of KKO and is in harmony with the study of Gartling,3 which 
indicates that channels with lengths L/H 2 15 are sufficiently long to preclude undue influence of 
the finite channel length on the flow at Re = 800. The following conditions are applied on the 
boundaries of the computational domain: u = 0 = 0 on the horizontal walls, - p + ptau/an = 0 and 
av/dn=O on the outflow boundary, and u=[tanh (t/4)]uB(y)+[1 -tanh(t/4)]up(y) and v = O  on 
the inflow boundary and the step face. Here uB(y)=max [O, 24y ( i - y ) ]  is the correct inlet 
boundary condition and up ( y )  = 3 (t - y )  (4 + y )  is the Poiseuille flow observed infinitely far 
downstream whenever steady flow is asymptotically obtained. With this inflow boundary condi- 
tion, fluid actually flows through the step at early times (see Figure 16); however, the boundary 
condition is virtually identical to ue(y)  for times ta30. Note too that this boundary condition 
maintains a time-independent mass flux through the inflow boundary. The initial velocity field is 
set equal to u = u p  (y) and v = O  everywhere in the domain. Thus, the above combination of 
boundary and initial conditions allows the simulations to be initialized using an exact divergence- 
free solution of the Navier-Stokes equations, namely Poiseuille flow. Furthermore, since the 
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Figure 16. The inflow velocity profile at selected times. Note that at early times flow actually passes through the step 
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inflow boundary condition is varied smoothly in time from Poiseuille flow to flow over a back- 
ward-facing step, the flow experiences an order-unity transient that is probably strong enough to 
excite sustained unsteady behaviour, if that is the appropriate long-time behaviour for the 
simulation. 

All simulations discussed in this section are performed with the computational fluid dynamics 
code NEKTON ~2 .8 . ’~  NEKTON employs an Uzawa spectral element method similar to that 
developed by Patera.29 In brief, the spectral element method is a high-order finite element 
method: each element has N D  velocity nodes and (N-2)’ pressure nodes, where D is the 
dimensionality. The velocity nodes are located at Gauss-Lobatto collocation points, some of 
which are on the element boundaries, whereas the pressure nodes are located at Gauss points, 
none of which are on the element boundaries. The velocity components and the pressure are 
represented within an element by sums of D-dimensional tensor products of ( N -  1)- and 
( N  - 3)-order Lagrangian-interpolant polynomials, respectively, based on velocity and pressure 
nodal values. Thus, from one element to an adjacent one, the velocity components are continu- 
ous, whereas the pressure is discontinuous. Henceforth, the quantity N will be referred to as the 
element order, even though it is not strictly the order of the polynomials used to represent the 
fields. To avoid solving a non-linear non-symmetric system of equations at each time, NEKTON 
advances the convective term u * Vu explicitly in time, but all other terms are treated implicitly. 
This explicit feature imposes a Courant restriction on the size of the maximum time step. 

There are two methods available in NEKTON to examine the effects of mesh refinement on 
a numerical solution. First, as in conventional finite element (and finite difference) methods, the 
computational domain can be subdivided ever more finely into progressively smaller elements. 
Second, unlike most finite element methods, the element order N can be increased without 
modifying the original subdivision of the computational domain. In this latter case, it is believed 
that ‘spectral convergence’ will 29 errors decrease exponentially in the number of nodes, 
rather than algebraically, as would result from fixing the element order and further subdividing 
the domain. Both of these methods for determining whether solutions are mesh-independent are 
examined below. 

Simulations. Three grids of differing resolution, denoted L (low), M (medium) and H (high), are 
employed in the simulations (see Figure 17). In this section, the term ‘grid’ is used to denote the 
subdivision of the computational domain into spectral elements, without regard to the element 
order, whereas the term ‘mesh’ is used to denote the actual nodes resulting from a specified 
element order N and a specified spectral element grid. The H grid with element order N = 7 yields 
a mesh that is comparable in nodal density to the C mesh of G a r t l i ~ ~ g , ~  on which the steady 
solution is found to be adequately resolved. Similarly, the L grid is comparable to the KKO grid, 

Figure 17. The three NEKTON grids: top, L grid; middle, M grid; bottom, H grid. Velocity and pressure histories are 
recorded at points (1,0), (4, -0.25), (5,0.25) and (15, 0), indicated by crosses ( x )  
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Table V. Mesh refinement results 

Case Grid Order N Temporal behaviour 

LO9 L 9 Numerical errors 
L10 L 10 Numerical errors 
L11 L 1 1  Unsteady chaotic 
L12 L 12 Steady oscillatory 
M07 M I Numerical errors 
M08 M 8 Steady oscillatory 
M09 M 9 Steady oscillatory 
M10 M 9 Steady monotonic 
H05 H 5 Numerical errors 
H06 H 6 Numerical errors 
H07 H 7 Steady monotonic 
H08 H 8 Steady monotonic 
H09 H 9 Steady monotonic 

with which an element order of N = 9  was used. At this element order, the resultant mesh has 
a nodal density in the streamwise direction that is only about 40% of the Gartling C mesh and 
thus may have only marginal resolution for steady flow at Re=800, based on the results of 
G a r t l i ~ ~ g . ~  The maximum element aspect ratios (streamwise length to spanwise length) are 8:  1, 
4: 1, 2: 1 and 4: 1 for the L grid, the M grid, the H grid, and the Gartling C mesh, respectively. 

Table V shows a categorization of the simulations performed for Re = 800 based on the grid 
and the element order that are employed. In each simulation, a fixed time step of At = 0.025 is 
employed. This value is chosen so that the Courant limitation imposed by the explicit treatment 
of the convective term is satisfied even for the cases with the highest spatial resolution. Although 
the time-integration scheme in NEKTON is capable of adapting the time step, this option is not 
employed here. Each simulation is advanced to a time oft = 200, which appears to be long enough 
to determine the asymptotic temporal behaviour of the flow, indicated in Table V by brief 
qualitative descriptions. 

Four general classes of behaviour are observed for the numerical solutions. First, ‘steady 
monotonic’ denotes evolution toward an asymptotically steady state by means of a monotonic 
decay of the transient after the starting transient has been convected out of the computational 
domain. Second, ‘steady oscillatory’ denotes evolution toward an asymptotically steady state by 
means of a decaying, or damped, oscillation. Third, ‘unsteady chaotic’ denotes sustained irregular 
transient behaviour with no indication of evolution toward steady behaviour. Fourth, ‘numerical 
errors’ denotes termination of a numerical solution by a floating-point exception. This results 
from the velocity field becoming non-physically large within one element. Velocity histories 
exhibiting steady monotonic and unsteady chaotic behaviours are shown in Figure 18, and the 
corresponding streamlines are shown in Figure 19. Cases H08 and H09 yield nearly identical 
spatial and temporal variations of pressure and velocity and thus are believed to represent 
mesh-independent solutions. Additionally, the locations of the separation and reattachment 
points of the recirculating regions, shown in Table VI, are in good agreement with the results of 
Gartling. 

Discussion. A clear trend emerges from these results. When the resolution is increased beyond 
a certain point, the numerical solution evolves toward an asymptotically steady flow by a mono- 
tonic decay of the transient. However, as the resolution is decreased, the numerical solution 
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0.2 
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-0.1 
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time 
Figure 18. Velocity histories for cases L l l ,  M10 and H09 

Figure 19. Streamlines at t=200: top, case L l l ;  middle, case M10; bottom, case H09 (vertical scale expanded 4: 1 for 
viewing ease) 
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Table VI. Comparison of present results (extrapolated to t = 03) with Gartling3 

Quantity Present study Gartling3 

Lower eddy reattachment x location 
Upper eddy separation x location 
Upper eddy reattachment x location 
Stream function at lower eddy centre 
Stream function at upper eddy centre 

6.10 6.10 
4.86 4.85 

10.49 10.48 
- 0'0342 -00342 

0.5065 0.5064 

becomes less stable, with temporally decaying oscillations, and ultimately unstable, at which 
point it exhibits bounded chaotic behaviour. Further decreases in resolution cause numerical 
errors to terminate the numerical solution. This trend is observed to hold for resolution changes 
resulting either from finer subdivision of the computational domain in the streamwise direction or 
from increases in the element order. Results reported elsewhere3' for simulations with Re = 500 
and Re = 800 for the same geometry as KKO show a similar dependence of temporal behaviour 
on streamwise resolution. Based on these results, the corrct temporal behaviour of flow over 
a backward-facing step at Re = 800 seems to be evolution to a stable, asymptotically steady flow 
by means of a monotonic decay of the transient. This concluison is in disagreement with KKO, 
where resolution in the streamwise direction appears to be marginal, as discussed above. Note in 
passing that the appearance of unsteady chaotic flow at low streamwise resolution does not seem 
to be caused by an instability arising from a violation of the Courant limitation on the time step. 
To the contrary, since the time step is the same fixed value for all simulations, cases with higher 
resolution, which yield asymptotically steady behaviour, are actually computed at higher 
Courant numbers than cases with lower resolution since the nodes are closer together in the cases 
with higher resolution. 

A rigorous explanation for the resolution dependence of the temporal behaviour of numerical 
solutions determined using spectral element methods has yet to be developed. A tentative 
mechanism by which inadequate resolution can alter the temporal behaviour of numerical 
solutions obtained using spectral element methods is as follows. In a spectral element method, 
inadequate spatial resolution will effectively force high-order polynomials to be fit through 
spatial variations that are too rapid to be represented accurately. This can produce a non- 
physical spatial variation (i.e. wiggles) in the underresolved direction. If the wiggles are convected 
in the underresolved direction, they can induce additional transient spatial variations in the 
underresolved direction. The polynomial representation continually attempts to follow these 
transient spatial variations but is unable to do so, and unsteady behaviour results. 

Examination of the divergence of the velocity field, V - u, provides some evidence that a mech- 
anism similar to the above is occurring. In the NEKTON post-processor, the divergence is 
calculated by using the nodal values of the velocity components in conjunction with the analytical 
derivatives of the polynomial basis functions.28 Since this approximation to the divergence 
operator is different from the means by which the NEKTON Uzawa solver enforces a discretely 
divergence-free velocity field, examination of the divergence during post-processing provides 
useful diagnostic information about the quality of the numerical solution. In fact, it is this very 
diagnostic which guided the mesh refinement efforts discussed earlier. Figure 20 shows post- 
processed divergence contours for the steady and chaotic cases shown in the previous figure. 
Whenever unsteady chaotic flow is observed, the divergence, calculated as indicated above, is 
found to be order-unity at many locations in the domain, which indicates that the velocity field is 
not sufficiently well resolved. Nevertheless, even for elements within which the divergence is large, 
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( c) 
Figure 20. Divergence contours (0.04 between levels) at t=2W (a) case L11; (b) case M10; (c). case H09 (vertical scale 

expanded 4: 1 for viewing ease) 

the condition of zero net flow out of the element, as required by incompressibility, is well satisfied. 
Wherever the divergence is appreciably non-zero, it typically exhibits a strong sinusoidal 
variation in the streamwise direction, indicating that the streamwise direction is underresolved. In 
all cases with asymptotically steady flow, however, the divergence is close to zero throughout the 
domain except near the expansion corner, where the flow is weakly singular (the pressure is 
negatively infinite and the vorticity is multivalued). Since any element basis function not 
incorporating these features is inherently incapable of representing accurately the resultant steep 
gradients in this region, a high degree of mesh refinement is required near the corner to minimize 
the extent of the region within which the flow is poorly represented, namely the elements adjacent 
to the corner and perhaps their nearest neighbours. On a spectral element mesh, the solution 
within these elements typically exhibits wiggles and non-zero divergence, as shown in Figure 21. If 
the spectral element mesh has large elements (a coarse mesh), the region within which the flow is 
poorly represented can extend significantly into the domain. 

Conclusions. Several observations can be made based on the above results. First, inadequate 
spatial resolution can produce wiggles in spectral element (and other) types of representations of 
smooth fields. This can occur in a steady fashion near singularities resulting from discontinuities 
(at some order) in boundary conditions or transiently due to the transient appearance of 
gradients. Second, inadequate spatial resolution can alter the temporal behaviour of numerical 
solutions determined by spectral element methods. Third, transient solvers m a y  require more 
highly refined meshes compared to those required by steady solvers since appreciable gradients 
may arise transiently in regions where the steady solution has small gradients. Fourth, monitor- 
ing the divergence within elements (calculated as indicated above) can indicate regions of 



STABILITY OF STEADY VISCOUS INCOMPRESSIBLE 2D FLOW 537 

0.020 

CI 

0.015 
C 
0 
Q 
E 0.010 

8 
u -- 0.005 
0 
0 - 

& -0.005 
> 

-0.010 

(a) 

-0.230 

-0.232 

-0.234 

f -0.236 
cn cn 

-0.238 h 
-0.240 

-0.242 

-0.244 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

x (along y = 0) 

t 
element boundary 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.Q 1.0 

(b) x (along y = 0) 

Figure 21. Spatial variations of vertical velocity component (top) and pressure (bottom) near the expansion corner 
(a weak singularity) for case H07: wiggles result from inadequate spatial resolution 

inadequate resolution. This fact may prove useful in developing mesh-refinement strategies to 
ensure adequate spatial resolution for spectral element methods. 

3. DISCUSSION 

The principal purpose of this section is to mention a few more studies that were performed at 
Re=800 via time-marching methods to show, in part, that KKO are actually not alone in 
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Table VII. 4-node19-node comparison 

4-node element 9-node element (Gartling) 

21 ~ 4 0 1 =  41 x 801 = 
8421 nodes 32841 nodes 
(YO error) (YO error) 

Lower eddy 

Upper eddy 

Upper eddy 

length 5.59 (8.4) 5.95 (2.5) 

separation 4-35 (10.3) 4.70 (3.1) 

reattachment 10.28 (1.9) 10.43 (0.48) 

21 x 201 = 4 1 ~ 8 0 1 =  8 1 ~ 1 6 0 1 =  
8421 nodes 32 841 nodes 129 681 nodes 
(YO error) 

6.07 (0.49) 6.09 6.10 

4.83 (041) 4.85 4.85 

10.47 (0.10) 10.48 1048 

believing that the solution is not steady. More often than not, however, steady solutions were 
obtained, leading one to become suspicious of more than just the spectral element method. 

We begin by showing some steady results obtained at LLNL3’ using the 4-node bilinear 
finite element (with piecewise-constant pressure) and the time-marching scheme described in 
Reference 32-basically forward Euler. Table VII shows that (i) this element is essentially 
second-order-accurate and (ii) many more ‘low-order’ elements are needed to obtain the accuracy 
available from the ‘high-order’ (9-node biquadratic) element-a ‘crude’ (and hopefully pessimis- 
tic) estimate yields the need for a 100 x 1800 mesh of 18000 4-node elements to attain just the 
accuracy of this 9-node element on the 10 x 200 mesh (2000 elementstnot  too different from the 
fine mesh finite difference simulation of Section 2.3 (which also shows similar errors as the 2000 
element mesh of 9-node elements). Note that a mesh of N 9-node elements has the same number of 
velocity nodes as a 4N 4-node mesh; and, each node is much more ‘accurate’. 

The rest of the additional results come from a very recent special session of the ASME,33 in 
which we mention only those 7 (of 12) contributions that were performed via time integration. 
These papers resulted from a follow-on to the original fluid mechanics benchmark problem3 in 
which a simple heat transfer problem was appended to the original problem. (It is an uncoupled 
problem, so that the hard part can be done first, and the simpler advection-diffusion calculation 
second-unless the first finds no steady state.) A very brief summary of the four simulations that 
reached a steady solution will be presented first, followed by the three that did not. 

Tatsumi et a second-order explicit Runge-Kutta method was applied to the semi- 
discrete (control volume method) equations. Centred second-order spatial differencing was 
used except for advection, which employed the QUICK method of upwinding. 
Pepper et u E . ~ ~  used the forward Euler method to integrate the semi-discrete equations that 
were obtained via the FEM using the 4-node (bilinear) element for both velocity and 
pressure. The usually unstable equal-order method was stabilized (and pressure modes thus 
precluded) via the ‘inconsistent’ pressure Poisson equation (see Reference 36). 
Schaub and Baker,37 the stream-function-vorticity version of the equations was discretized 
using bilinear (4-node) finite elements and the resulting semi-discrete equations were 
marched in time via either backward Euler or trapezoid rule. (They did not state which they 
used). 
Dyne and Heinrich3* used bilinear finite elements on the ‘penalty’ version of the 
Navier-Stokes equations (with Petrov-Galerkin weighting rather than the usual Galerkin 
weighting) and marched them to steady state with a semi-implicit method (explicit for 
advectiontbut no further details were given. 
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We now summarize the three papers from this conference that did not find the steady-state 

( 5 )  Runcha13’ used the finite volume discretization method with a second-order TVD scheme 
for advection to generate the semi-discrete equations which were then marched forward via 
the SIMPLE method. The oscillatory solution was ‘justified’ by noting that a steady (but 
wrong, owing to numerical diffusion) solution was obtained if they used the hybrid upwind 
method rather than the TVD method. 

(6) C h o ~ d h u r y ~ ~  used the FLUENT finite volume code, with QUICK for advection and 
co-located velocity and pressure variables. The SIMPLEC algorithm was used for velocity- 
pressure coupling but details of the time-marching method were not reported-only that 
an oscillatory solution was the result, ii la KKO whom they reference for ‘verification.’ 

(7) Chakrabarti and Subbiah4’ used Fluent’s NEKTON code (spectral element) with a split- 
ting (fractional step) marching scheme to obtain, like KKO, ‘some unsteady behaviour 
suggesting that the flow is not truly steady at Reynolds number of 800.’ 

Returning now to the KKO paper, whose results we have demonstrated to be underresolved, we 
note their additional statements, ‘At Reynolds number Re = 700 the flow has already undergone 
its first bifurcation,’ and ‘Our results suggest that the transition process starts at approximately 
Re z 700 with fluctuations becoming increasingly larger as Re approaches 1000.’ Their results, 
as well as those of Sethian and Ghoniem,’ R ~ n c h a l , ~ ~  Choudhury4’ and Chakrabarti and 
S ~ b b i a h , ~ ~  show that much care is required not to fall into the trap of numerically-generated 
transient fluid dynamics, 6 la ‘The Dynamics of Numerics’, see e.g. Reference 42. 

As a final point relating to the extra care needed by spectral (and spectral element) method 
practitioners, we quote from a recent paper by Schumack et u Z . , ~ ~  who solved one of the simplest 
of all problems-the steady Stokes equations-10 different ways using spectral methods: ‘The 
presence of corner singularities destroys the accuracy of spectral methods.’ Unfortunately, there 
are many ‘real’ fluid mechanical simulations that do not generate ‘sufficiently smooth solutions; 
perhaps ‘rough’ solutions are more appropriately simulated using rough (low-order) numerical 
methods, on grids that ‘adapt’ to singularities via mesh refinement. 

solution. 

4. CONCLUSIONS 

In spite of several opinions to the contrary, the t-+w solution of the incompressible 
Navier-Stokes equations past a backward-facing step at Re = 800 is steady and stable. 

But there are other important conclusions from this long and expensive study that are worth 
mentioning-because we believe that some generalizing is appropriate (i.e. it is likely that there 
are other rogue solutions in the published literature, with perhaps more to come): 

(1) Journals and their referees must remain vigilant to demonstrations of accuracy and 
convergence, especially when new fluid mechanical phenomena are being proposed or 
explained. 

(2) CFD is not easy, even today; much care is required. 
(3) While not professing to be benchmark zealots, we believe that it is worthwhile to generate 

both a small set of them (benchmarks) and to require ‘numerical’ papers to show agreement 
with at least some subset of them, especially if the paper has uncovered something new 
and/or different. 

(4) The circumstances that ‘caused’ the study are unfortunate, but probably useful in the long 
run. 
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